
Dask Yarn

Aug 17, 2021

Contents

1 Install 3
1.1 Quickstart . 3
1.2 Managing Python Environments . 6
1.3 Configuration . 8
1.4 Submitting Applications . 11
1.5 Deploying on Amazon EMR . 13
1.6 Deploying on Google Cloud Dataproc . 15
1.7 API Docs . 18
1.8 CLI Docs . 21

Index 25

i

ii

Dask Yarn

Dask-Yarn deploys Dask on YARN clusters, such as are found in traditional Hadoop installations. Dask-Yarn provides
an easy interface to quickly start, scale, and stop Dask clusters natively from Python.

from dask_yarn import YarnCluster
from dask.distributed import Client

Create a cluster where each worker has two cores and eight GiB of memory
cluster = YarnCluster(environment='environment.tar.gz',

worker_vcores=2,
worker_memory="8GiB")

Scale out to ten such workers
cluster.scale(10)

Connect to the cluster
client = Client(cluster)

Dask-Yarn uses Skein, a Pythonic library to create and deploy YARN applications.

Contents 1

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://jcrist.github.io/skein/

Dask Yarn

2 Contents

CHAPTER 1

Install

Dask-Yarn is designed to only require installation on an edge node. To install, use one of the following methods:

Install with Conda:

conda install -c conda-forge dask-yarn

Install with Pip:

pip install dask-yarn

Install from Source:

Dask-Yarn is available on github and can always be installed from source.

pip install git+https://github.com/dask/dask-yarn.git

1.1 Quickstart

Dask-Yarn is designed to be used like any other python library - install it locally and use it in your code (either
interactively, or as part of an application). As long as the computer you’re deploying on has access to the YARN
cluster (usually an edge node), everything should work fine.

1.1.1 Install Dask-Yarn on an Edge Node

Dask-Yarn is designed to be used from an edge node. To install, use either conda or pip to create a new environment
and install dask-yarn on the edge node.

Conda Environments:

Create a new conda environment with dask-yarn installed. You may also want to add any other packages you rely
on for your work.

3

https://github.com/dask/dask-yarn
http://conda.io/
https://pip.pypa.io/en/stable/quickstart/

Dask Yarn

$ conda create -n my_env dask-yarn # Create an environment

$ conda activate my_env # Activate the environment

Virtual Environments:

Create a new virtual environment with dask-yarn installed. You may also want to add any other packages you rely
on for your work.

$ python -m venv my_env # Create an environment using venv

$ source my_env/bin/activate # Activate the environment

$ pip install dask-yarn # Install some packages

1.1.2 Package your environment for Distribution

We need to ensure that the libraries used on the Yarn cluster are the same as what you are using locally. By default,
dask-yarn handles this by distributing a packaged python environment to the Yarn cluster as part of the applications.
This is typically handled using

• conda-pack for Conda environments

• venv-pack for virtual environments

See Managing Python Environments for more information.

Conda Environments:

If you haven’t already installed conda-pack, you’ll need to do so now. You can either install it in the environment to
be packaged, or your root environment (where it will be available to use in all environments).

$ conda install -c conda-forge conda-pack # Install conda-pack

$ conda-pack # Package environment
Collecting packages...
Packing environment at '/home/username/miniconda/envs/my_env' to 'my_env.tar.gz'
[##] | 100% Completed | 12.2s

Virtual Environments:

If you haven’t already installed venv-pack, you’ll need to do so now.

$ pip install venv-pack # Install venv-pack

$ venv-pack # Package environment
Collecting packages...
Packing environment at '/home/username/my-env' to 'my-env.tar.gz'
[##] | 100% Completed | 8.3s

1.1.3 Kinit (Optional)

If your cluster is configured to use Kerberos for authentication, you need to make sure you have an active ticket-
granting-ticket before continuing:

$ kinit

4 Chapter 1. Install

https://conda.github.io/conda-pack/
http://conda.io/
https://jcrist.github.io/venv-pack/
https://docs.python.org/3/library/venv.html
https://conda.github.io/conda-pack/
https://jcrist.github.io/venv-pack/

Dask Yarn

1.1.4 Usage

To start a YARN cluster, create an instance of YarnCluster. This constructor takes several parameters, leave them
empty to use the defaults defined in the Configuration.

from dask_yarn import YarnCluster
from dask.distributed import Client

Create a cluster where each worker has two cores and eight GiB of memory
cluster = YarnCluster(environment='environment.tar.gz',

worker_vcores=2,
worker_memory="8GiB")

Connect to the cluster
client = Client(cluster)

Do some work here

Shutdown client and cluster (alternatively use context-manager as shown below):
client.shutdown()
cluster.shutdown()

By default no workers are started on cluster creation. To change the number of workers, use the YarnCluster.
scale() method. When scaling up, new workers will be requested from YARN. When scaling down, workers will
be intelligently selected and scaled down gracefully, freeing up resources.

Scale up to 10 workers
cluster.scale(10)

...

Scale back down to 2 workers
cluster.scale(2)

Alternatively, you can enable adaptive scaling using the YarnCluster.adapt() method. When enabled, the
cluster will scale up and down automatically depending on usage. Here we turn on adaptive scaling, bounded at a
minimum of 2 workers and a maximum of 10 workers.

Adaptively scale between 2 and 10 workers
cluster.adapt(minimum=2, maximum=10)

If you’re working interactively in a Jupyter Notebook or JupyterLab, you can also use the provided graphical interface
to change the cluster size, instead of calling YarnCluster.scale() or YarnCluster.adapt() manually.

1.1. Quickstart 5

https://jupyter-notebook.readthedocs.io/en/stable/
https://jupyterlab.readthedocs.io/en/latest/

Dask Yarn

Normally the cluster will persist until the YarnCluster object is deleted. To be more explicit about when the cluster
is shutdown, you can either use the cluster as a context manager, or manually call YarnCluster.shutdown().

Use ``YarnCluster`` as a context manager
with YarnCluster(...) as cluster:

The cluster will remain active inside this block,
and will be shutdown when the context exits.

Or manually call `shutdown`
cluster = YarnCluster(...)
...
cluster.shutdown()

1.2 Managing Python Environments

We need to ensure that the libraries used on the Yarn cluster are the same as what you are using locally. There are a
few ways to specify this:

• The path to an archived environment (either conda or virtual environments)

• The path to a Conda environment (as conda:///...)

• The path to a virtual environment (as venv:///...)

• The path to a python executable (as python:///...)

Note that when not using an archive, the provided path must be valid on all nodes in the cluster.

1.2.1 Using Archived Python Environments

The most common way to use dask-yarn is to distribute an archived Python environment throughout the YARN
cluster as part of the application. Packaging the environment for distribution is typically handled using

• conda-pack for Conda environments

• venv-pack for virtual environments

These environments can contain any Python packages you might need, but require dask-yarn (and its dependencies)
at a minimum.

6 Chapter 1. Install

http://conda.io/
https://docs.python.org/3/library/venv.html
http://conda.io/
https://docs.python.org/3/library/venv.html
https://conda.github.io/conda-pack/
http://conda.io/
https://jcrist.github.io/venv-pack/
https://docs.python.org/3/library/venv.html

Dask Yarn

Archiving Conda Environments Using Conda-Pack

You can package a conda environment using conda-pack.

$ conda create -n my-env dask-yarn scikit-learn # Create an environment

$ conda activate my-env # Activate the environment

$ conda-pack # Package environment
Collecting packages...
Packing environment at '/home/username/miniconda/envs/my-env' to 'my-env.tar.gz'
[##] | 100% Completed | 12.2s

Archiving Virtual Environments Using Venv-Pack

You can package a virtual environment using venv-pack. The virtual environment can be created using either venv
or virtualenv. Note that the python linked to in the virtual environment must exist and be accessible on every node
in the YARN cluster. If the environment was created with a different Python, you can change the link path using the
--python-prefix flag. For more information see the venv-pack documentation.

$ python -m venv my_env # Create an environment using venv
$ python -m virtualenv my_env # Or create an environment using
→˓virtualenv

$ source my_env/bin/activate # Activate the environment

$ pip install dask-yarn scikit-learn # Install some packages

$ venv-pack # Package environment
Collecting packages...
Packing environment at '/home/username/my-env' to 'my-env.tar.gz'
[##] | 100% Completed | 8.3s

Specifying the Archived Environment

You can now start a cluster with the packaged environment by passing the path to the constructor, e.g.
YarnCluster(environment='my-env.tar.gz', ...).

Note that if the environment is a local file, the archive will be automatically uploaded to a temporary directory on HDFS
before starting the application. If you find yourself reusing the same environment multiple times, you may want to
upload the environment to HDFS once beforehand to avoid repeating this process for each cluster (the environment is
then specified as hdfs:///path/to/my-env.tar.gz).

After startup you may want to verify that your versions match with the following:

from dask_yarn import YarnCluster
from dask.distributed import Client

cluster = YarnCluster(environment='my-env.tar.gz')
client = Client(cluster)
client.get_versions(check=True) # check that versions match between all nodes

1.2. Managing Python Environments 7

https://conda.github.io/conda-pack/
https://jcrist.github.io/venv-pack/
https://docs.python.org/3/library/venv.html
https://virtualenv.pypa.io/en/stable/
https://jcrist.github.io/venv-pack/

Dask Yarn

1.2.2 Using Python Environments Local to Each Node

Alternatively, you can specify the path to a conda environment, virtual environment, or Python executable that is
already found on each node:

from dask_yarn import YarnCluster

Use a conda environment at /path/to/my/conda/env
cluster = YarnCluster(environment='conda:///path/to/my/conda/env')

Use a virtual environment at /path/to/my/virtual/env
cluster = YarnCluster(environment='venv:///path/to/my/virtual/env')

Use a Python executable at /path/to/my/python
cluster = YarnCluster(environment='python:///path/to/my/python')

As before, these environments can have any Python packages, but must include dask-yarn (and its dependencies) at
a minimum. It’s also very important that these environments are uniform across all nodes; mismatched environments
can lead to hard to diagnose issues. To check this, you can use the Client.get_versions method:

from dask.distributed import Client

client = Client(cluster)
client.get_versions(check=True) # check that versions match between all nodes

1.3 Configuration

Specifying all parameters to the YarnCluster constructor every time may be error prone, especially when sharing this
workflow with new users. Alternatively, you can provide defaults in a configuration file, traditionally held in ~/
.config/dask/yarn.yaml or /etc/dask/yarn.yaml. Note that this configuration is optional, and only
changes the defaults when not specified in the constructor. You only need to set the fields you care about, unset fields
will fall back to the default configuration.

Example:

~/.config/dask/yarn.yaml
yarn:
name: dask # Application name
queue: default # Yarn queue to deploy to

environment: /path/to/my-env.tar.gz

scheduler: # Specifications of scheduler container
vcores: 1
memory: 4GiB

worker: # Specifications of worker containers
vcores: 2
memory: 8GiB

Users can now create YarnClusters without specifying any additional information.

from dask_yarn import YarnCluster

(continues on next page)

8 Chapter 1. Install

http://conda.io/
https://docs.python.org/3/library/venv.html

Dask Yarn

(continued from previous page)

cluster = YarnCluster()
cluster.scale(20)

For more information on Dask configuration see the Dask configuration documentation.

1.3.1 Providing a Custom Skein Specification

Sometimes you’ll need more control over the deployment than is provided by the above configuration fields. In this
case you can provide the path to a custom Skein specification to the yarn.specification field. If this field is
present in the configuration, it will be used as long as no parameters are passed to the YarnCluster constructor.
Note that this is equivalent to calling YarnCluster.from_specification() programatically.

/home/username/.config/dask/yarn.yaml
yarn:
specification: /path/to/spec.yaml

The specification requires at least one Service named dask.worker which describes how to start a single worker.
If an additional service dask.scheduler is provided, this will be assumed to start the scheduler. If dask.
scheduler isn’t present, a scheduler will be started locally instead.

In the script section for each service, the appropriate dask-yarn CLI Docs command should be used:

• dask-yarn services worker to start the worker

• dask-yarn services scheduler to start the worker

Beyond that, you have full flexibility for how to define a specification. See the Skein documentation for more infor-
mation. A few examples are provided below:

Example: deploy-mode local with node_label restrictions

This specification is similar to that created automatically when deploy_mode='local' is specified (scheduler
runs locally, only worker service specified), except it adds node_label restrictions for the workers. Here we restrict
workers to run only on nodes labeled as GPU.

/path/to/spec.yaml
name: dask
queue: myqueue

services:
dask.worker:
Restrict workers to GPU nodes only
node_label: GPU
Don't start any workers initially
instances: 0
Workers can infinite number of times
max_restarts: -1
Restrict workers to 4 GiB and 2 cores each
resources:
memory: 4 GiB
vcores: 2

Distribute this python environment to every worker node
files:

environment: /path/to/my/environment.tar.gz
The bash script to start the worker

(continues on next page)

1.3. Configuration 9

https://docs.dask.org/en/latest/configuration.html
https://jcrist.github.io/skein/specification.html
https://jcrist.github.io/skein/specification.html#service
https://jcrist.github.io/skein/
https://jcrist.github.io/skein/specification.html#node-label

Dask Yarn

(continued from previous page)

Here we activate the environment, then start the worker
script: |

source environment/bin/activate
dask-yarn services worker

Example: deploy-mode remote with custom setup

This specification is similar to that created automatically when deploy_mode='remote' is specified (both sched-
uler and worker run inside YARN containers), except it runs an initialization script before starting each service.

/path/to/spec.yaml
name: dask
queue: myqueue

services:
dask.scheduler:
Restrict scheduler to 2 GiB and 1 core
resources:
memory: 2 GiB
vcores: 1

The bash script to start the scheduler.
Here we have dask-yarn already installed on the node,
and also run a custom script before starting the service
script: |

some-custom-initialization-script
dask-yarn services worker

dask.worker:
Don't start any workers initially
instances: 0
Workers can infinite number of times
max_restarts: -1
Workers should only be started after the scheduler starts
depends:
- dask.scheduler

Restrict workers to 4 GiB and 2 cores each
resources:

memory: 4 GiB
vcores: 2

The bash script to start the worker.
Here we have dask-yarn already installed on the node,
and also run a custom script before starting the service
script: |

some-custom-initialization-script
dask-yarn services worker

1.3.2 Default Configuration

The default configuration file is as follows

yarn:
specification: null # A path to a skein specification yaml file.

Overrides the following configuration if given.

(continues on next page)

10 Chapter 1. Install

Dask Yarn

(continued from previous page)

name: dask # Application name
queue: default # Yarn queue to deploy to
deploy-mode: remote # The deploy mode to use (either remote or local)
environment: null # The Python environment to use
tags: [] # List of strings to tag applications
user: '' # The user to submit the application on behalf of,

leave as empty string for current user.

host: "0.0.0.0" # The scheduler host, when in deploy-mode=local
port: 0 # The scheduler port, when in deploy-mode=local
dashboard-address: ":0" # The dashboard address, when in deploy-mode=local

scheduler: # Specifications of scheduler container
vcores: 1
memory: 2GiB
gpus: 0 # Number of GPUs requested

worker: # Specifications of worker containers
vcores: 1
memory: 2GiB
count: 0 # Number of workers to start on initialization
restarts: -1 # Allowed number of restarts, -1 for unlimited
env: {} # A map of environment variables to set on the worker
gpus: 0 # Number of GPUs requested
worker_class: "dask.distributed.Nanny" # The kind of worker to launch
worker_options: {} # A map of options to pass to the worker

client: # Specification of client container
vcores: 1
memory: 2GiB
gpus: 0 # Number of GPUs requested
env: {} # A map of environment variables ot set on the client

1.4 Submitting Applications

Warning: The submission API is experimental and may change between versions

Sometimes you have Dask Application you want to deploy completely on YARN, without having a corresponding
process running on an edge node. This may come up with production applications deployed automatically, or long
running jobs you don’t want to consume edge node resources.

To handle these cases, dask-yarn provides a CLI Docs that can be used to submit applications to be run on the
YARN cluster asynchronously. There are three commands that may be useful here:

• dask-yarn submit: submit an application to the YARN cluster

• dask-yarn status: check on the status of an application

• dask-yarn kill: kill a running application

1.4. Submitting Applications 11

Dask Yarn

1.4.1 Submitting an Application

To prepare an application to be submitted using dask-yarn submit, you need to change the creation of your
YarnCluster from using the constructor to using YarnCluster.from_current().

Replace this
cluster = YarnCluster(...)

with this
cluster = YarnCluster.from_current()

This is because the script won’t be run until the cluster is already created - at that point configuration passed to the
YarnCluster constructor won’t be useful. Cluster configuration is instead passed via the dask-yarn submit
CLI (note that as before, the cluster can be scaled dynamically after creation).

Submit `myscript.py` to run on a dask cluster with 8 workers,
each with 2 cores and 4 GiB
$ dask-yarn submit \

--environment my_env.tar.gz \
--worker-count 8 \
--worker-vcores 2 \
--worker-memory 4GiB \
myscript.py

application_1538148161343_0051

This outputs a YARN Application ID, which can be used with other YARN tools.

1.4.2 Checking Application Status

Submitted application status can be checked using the YARN Web UI, or programmatically using dask-yarn
status. This command takes one parameter - the application id.

$ dask-yarn status application_1538148161343_0051
APPLICATION_ID NAME STATE STATUS CONTAINERS
→˓VCORES MEMORY RUNTIME
application_1538148161343_0051 dask RUNNING UNDEFINED 9 17
→˓ 33792 6m

1.4.3 Killing a Running Application

Submitted applications normally run until completion. If you need to terminate one before then, you can use the
dask-yarn kill command. This command takes one parameter - the application id.

$ dask-yarn kill application_1538148161343_0051

1.4.4 Accessing the Application Logs

Application logs can be retrieved a few ways:

• The logs of running applications can be viewed using the Skein Web UI (dask-yarn is built using Skein).

• The logs of completed applications can be viewed using the yarn logs command.

12 Chapter 1. Install

quickstart.html
https://jcrist.github.io/skein/web-ui.html
https://jcrist.github.io/skein/

Dask Yarn

$ yarn logs -applicationId application_1538148161343_0051

1.5 Deploying on Amazon EMR

Amazon Elastic MapReduce (EMR) is a web service for creating a cloud-hosted Hadoop cluster.

Dask-Yarn works out-of-the-box on Amazon EMR, following the Quickstart as written should get you up and running
fine. We recommend doing the installation step as part of a bootstrap action.

For a curated installation, we also provide an example bootstrap action for installing Dask and Jupyter on cluster
startup. This script is heavily commented, and can be used as an example if you need a more customized installation.

Here we provide a brief walkthrough of a workflow we’ve found useful when deploying Dask on Amazon EMR:

1.5.1 Configure the EMR Cluster

The EMR documentation contains an example showing how to configure and start an EMR cluster. We recommend
referencing their documentation. A few notes on recommended settings:

• If you plan to use a bootstrap action, you’ll need to follow the Go to advanced options link on the
Create Cluster page - this feature is not available under Quick Options.

• When chosing which applications to install, dask-yarn only requires a Hadoop installation, all other appli-
cations are optional depending on your workflow.

While this configuration can take some time and thought, the next time you want to start a Dask cluster on EMR you
can clone this cluster to reuse the configuration.

1.5.2 Add a Bootstrap Action

To make installation on a clean cluster easier, we recommend scripting the installation as part of a bootstrap action.
For a curated install, we provide an example bootstrap action that you may use. This script does the following:

• Installs miniconda.

• Installs dask, distributed, dask-yarn, pyarrow, and s3fs. This list of packages can be extended using
the --conda-packages flag.

• Packages the environment with conda-pack for distribution to the workers.

• Optionally installs and starts a Jupyter Notebook server running on port 8888. This can be disabled with the
--no-jupyter flag. The password for the notebook server can be set with the --password option, the
default is dask-user.

If you require a more customized install than this, you may wish to provide your own script. The example script is
heavily commented, and should hopefully provide enough of a reference for your use.

To use the script, follow AWS’s documentation on using bootstrap actions. You’ll need to upload the script to an S3
bucket accessible to your project first.

1.5.3 Start the EMR Cluster

Once you’ve finished configuring your cluster, you can start it with the Create Cluster button. This may take a
while (~10 mins), depending on your settings.

1.5. Deploying on Amazon EMR 13

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
https://github.com/dask/dask-yarn/blob/main/deployment_resources/aws-emr/bootstrap-dask
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs-launch-sample-cluster.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/clone-console.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
https://github.com/dask/dask-yarn/blob/main/deployment_resources/aws-emr/bootstrap-dask
http://conda.pydata.org/miniconda.html
https://arrow.apache.org/docs/python/
http://s3fs.readthedocs.io/en/latest/
https://conda.github.io/conda-pack/
https://jupyter-notebook.readthedocs.io/en/stable/
https://github.com/dask/dask-yarn/blob/main/deployment_resources/aws-emr/bootstrap-dask
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html

Dask Yarn

1.5.4 Connect to the EMR Cluster

Once the cluster is running, you’ll want to connect to it. Depending on your EC2 security groups settings, you
may have direct access to the cluster, or you may need to start an ssh tunnel (default). For either of these you’ll need
to know the public DNS name of your master node. This address looks like ec2-###-##-##-###.compute-1.
amazonaws.com, and can be found by following the AWS documentation.

Direct Access

If you have direct access to the cluster, you should be able to access the resource-manager WebUI at
<public-dns-name>:8088. If you used our provided bootstrap action, the Jupyter Notebook should be available
at <public-dns-name>:8888.

Using an SSH Tunnel

If you don’t have direct access, you’ll need to start an SSH tunnel to access the Web UIs or the Jupyter Notebook. For
more information, see the AWS documentation.

If you used our provided bootstrap action, the Jupyter Notebook should be available at
<public-dns-name>:8888, and can be accessed by starting a SSH tunnel via:

$ ssh -i ~/mykeypair.pem -L 8888:<public-dns-name>:8888 hadoop@<public-dns-name>

where ~/mykeypair.pem is your .pem file, and <public-dns-name> is the public DNS name of your master
node.

1.5.5 Create a Dask Cluster

At this point you should have access to a running EMR cluster, with Dask and its dependencies installed. To create a
new Dask cluster running inside the EMR cluster, create an instance of YarnCluster. If you didn’t use our bootstrap
action, you’ll also need to provide a path to your packaged environment (see Managing Python Environments for more
information).

from dask_yarn import YarnCluster
from dask.distributed import Client

Create a cluster
cluster = YarnCluster()

Connect to the cluster
client = Client(cluster)

By default no workers are started on cluster creation. To change the number of workers, use the YarnCluster.
scale() method. When scaling up, new workers will be requested from YARN. When scaling down, workers will
be intelligently selected and scaled down gracefully, freeing up resources.

Scale up to 10 workers
cluster.scale(10)

...

Scale back down to 2 workers
cluster.scale(2)

If you’re working interactively in a Jupyter Notebook you can also use the provided graphical interface to change the
cluster size.

14 Chapter 1. Install

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-connect-master-node-ssh.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-ssh-tunnel-local.html
https://jupyter-notebook.readthedocs.io/en/stable/

Dask Yarn

If you used our bootstrap action, the dask dashboard will also be available, and the link included in the cluster widget
above.

1.5.6 Shutdown the EMR Cluster

You can start, scale, and stop many Dask clusters within a single EMR cluster. When you’re finally done doing your
work, you’ll want to shutdown the whole EMR cluster to conserve resources. See the AWS documentation for more
information.

1.6 Deploying on Google Cloud Dataproc

Dataproc is Google Cloud’s hosted service for creating Apache Hadoop and Apache Spark clusters. Dataproc supports
a series of open-source initialization actions that allows installation of a wide range of open source tools when cre-
ating a cluster. In particular, the following instructions will guide you through creating a Dataproc cluster with Dask
and Dask-Yarn installed and configured for you. This tutorial is loosely adapted from the README for the Dask
initialization action.

1.6.1 What the Initialization Action is Doing

The initialization action installation script does several things:

• It accepts a metadata parameter for configuring your cluster to use Dask with either its standalone scheduler or
with Dask-Yarn to utilize Yarn.

• For the yarn configuration, this script installs dask and dask-yarn on all machines and adds a baseline
Skein config file. This file tells each machine where to locate the Dask-Yarn environment, as well as how
many workers to use by default: 2. This way, you can get started with dask-yarn by simply creating a
YarnCluster object without providing any parameters. Dask relies on using Yarn to schedule its tasks.

• For the standalone configuration, this script installs dask and configures the cluster to use the Dask sched-
uler for managing Dask workloads.

• The Dataproc service itself provides support for web UIs such as Jupyter and the Dask web UIs. This will be
explained in more detail below.

1.6. Deploying on Google Cloud Dataproc 15

http://distributed.dask.org/en/latest/web.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs-reset-environment.html
https://cloud.google.com/dataproc/
https://cloud.google.com/
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/init-actions
https://github.com/GoogleCloudDataproc/initialization-actions/blob/master/dask/README.md
https://github.com/GoogleCloudDataproc/initialization-actions/blob/master/dask/dask.sh

Dask Yarn

1.6.2 Configuring your Dataproc Cluster

There are several ways to create a Dataproc cluster. This tutorial will focus on using the gcloud SDK to do so.

First, you’ll need to create a GCP Project. Please follow the instructions here to do so.

Decide on a name for your Dataproc cluster. Then, pick a geographic region to place your cluster in, ideally one close
to you.

The following command will create a cluster for the dask-yarn configuration.

CLUSTER_NAME=<cluster-name>
REGION=<region>
gcloud dataproc clusters create ${CLUSTER_NAME} \

--region ${REGION} \
--master-machine-type n1-standard-16 \
--worker-machine-type n1-standard-16 \
--image-version preview \
--initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/dask/

→˓dask.sh \
--metadata dask-runtime=yarn \
--optional-components JUPYTER \
--enable-component-gateway

To break down this command:

• gcloud dataproc clusters create ${CLUSTER_NAME} uses the gcloud sdk to to create a Dat-
aproc cluster.

• --region ${REGION} specifies the cluster region.

• --master-machine-type and worker-machine-type allow configuration of CPUs and RAM via
different types of machines.

• image-version preview specifies the Dataproc image version. You’ll use the latest preview image of
Dataproc for the most up-to-date features.

• --initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/
dask/dask.sh specifies the initialization actions to install on the cluster. You can add as many as you’d like
via a comma-separated list.

• --metadata dask-runtime=yarn specifies to configure your cluster with Dask configured for use with
yarn.

• --optional-components JUPYTER configures the cluster with the Jupyter optional component to access
Jupyter notebooks running on the cluster. Like initialization actions, you can add as many optional components
as you’d like. These differ from initialization actions in that they come with first-class support from the Dataproc
service, but there are less options available.

• --enable-component-gateway allows you to bypass needing an SSH tunnel for a certain predetermined
list of web UIs on your cluster, such as Jupyter and the Yarn ApplicationMaster, by connecting directly through
the Dataproc web console.

1.6.3 Connecting to your cluster

You can access your cluster several different ways. If you configured your cluster with a notebook service such as
Jupyter or Zeppelin and enable component gateway (explained above), you can access these by navigating to your
clusters page, clicking on the name of your cluster and clicking on the Web Interfaces tab to access your web UIs.

16 Chapter 1. Install

https://cloud.google.com/dataproc/docs/guides/create-cluster
https://cloud.google.com/sdk/docs/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types
https://cloud.google.com/dataproc/docs/concepts/versioning/dataproc-versions#ubuntu_images
https://cloud.google.com/dataproc/docs/concepts/components/jupyter
https://cloud.google.com/dataproc/docs/concepts/components/overview
https://console.cloud.google.com/dataproc

Dask Yarn

You can also ssh into your cluster. You can do this via the Dataproc web console: from the clusters page, click on your
cluster name, then VM Instances and click SSH next to the master node.

Additionally, you can also use the gcloud sdk to SSH onto your cluster. First, locate the zone that your cluster is in.
This will be the region you specified earlier but with a letter attached to it, such as us-central1-b. To locate your
cluster’s zone, you can find this on the clusters page next to your cluster. This was determined via Dataproc’s Auto
Zone feature, but you can choose any zone to place your cluster by adding the --zone flag when creating a new
cluster.

gcloud compute ssh ${CLUSTER_NAME}-m --zone ${ZONE}

Once connected, either via a Jupyter notebook or via ssh, try running some code. If your cluster is configured with
Dask-Yarn:

from dask_yarn import YarnCluster
from dask.distributed import Client
import dask.array as da

import numpy as np

cluster = YarnCluster()
client = Client(cluster)

cluster.adapt() # Dynamically scale Dask resources

x = da.sum(np.ones(5))
x.compute()

If your cluster is configured with the standalone scheduler:

from dask.distributed import Client
import dask.array as da

import numpy as np

client = Client("localhost:8786")

x = da.sum(np.ones(5))
x.compute()

1.6.4 Monitoring Dask Jobs

You can monitor your Dask applications using Web UIs, depending on the runtime you are using.

For yarn mode, you can access the Skein Web UI via the YARN ResourceManager. To access the YARN ResourceM-
anager, create your cluster with component gateway enabled or create an SSH tunnel. You can then access the Skein
Web UI by following these instructions.

For standalone mode, you can access the native Dask UI. Create an SSH tunnel to access the Dask UI on port 8787.

1.6.5 Deleting your Dataproc Cluster

You can delete your cluster when you are done with it by running the following command:

gcloud dataproc clusters delete ${CLUSTER_NAME} --region ${REGION}

1.6. Deploying on Google Cloud Dataproc 17

https://console.cloud.google.com/dataproc
https://console.cloud.google.com/dataproc
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/auto-zone
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/auto-zone
https://cloud.google.com/dataproc/docs/concepts/accessing/cluster-web-interfaces
https://cloud.google.com/dataproc/docs/concepts/accessing/cluster-web-interfaces
https://cloud.google.com/dataproc/docs/guides/manage-cluster

Dask Yarn

1.6.6 Further Information

Please refer to the Dataproc documentation for more information on using Dataproc.

1.7 API Docs

class dask_yarn.YarnCluster(environment=None, n_workers=None, worker_vcores=None,
worker_memory=None, worker_restarts=None, worker_env=None,
worker_class=None, worker_options=None, worker_gpus=None,
scheduler_vcores=None, scheduler_gpus=None, sched-
uler_memory=None, deploy_mode=None, name=None,
queue=None, tags=None, user=None, host=None, port=None,
dashboard_address=None, skein_client=None, asynchronous=False,
loop=None)

Start a Dask cluster on YARN.

You can define default values for this in Dask’s yarn.yaml configuration file. See http://docs.dask.org/en/
latest/configuration.html for more information.

Parameters

environment [str, optional] The Python environment to use. Can be one of the following:

• A path to an archived Python environment

• A path to a conda environment, specified as conda:///. . .

• A path to a virtual environment, specified as venv:///. . .

• A path to a python executable, specifed as python:///. . .

Note that if not an archive, the paths specified must be valid on all nodes in the cluster.

n_workers [int, optional] The number of workers to initially start.

worker_vcores [int, optional] The number of virtual cores to allocate per worker.

worker_memory [str, optional] The amount of memory to allocate per worker. Accepts a unit
suffix (e.g. ‘2 GiB’ or ‘4096 MiB’). Will be rounded up to the nearest MiB.

worker_restarts [int, optional] The maximum number of worker restarts to allow before failing
the application. Default is unlimited.

worker_env [dict, optional] A mapping of environment variables to their values. These will be
set in the worker containers before starting the dask workers.

worker_gpus [int, options] The number of gpus to allocate per worker

scheduler_vcores [int, optional] The number of virtual cores to allocate per scheduler.

scheduler_gpus [int, options] The number of gpus to allocate per scheduler

scheduler_memory [str, optional] The amount of memory to allocate to the scheduler. Accepts
a unit suffix (e.g. ‘2 GiB’ or ‘4096 MiB’). Will be rounded up to the nearest MiB.

deploy_mode [{‘remote’, ‘local’}, optional] The deploy mode to use. If 'remote', the
scheduler will be deployed in a YARN container. If 'local', the scheduler will run lo-
cally, which can be nice for debugging. Default is 'remote'.

name [str, optional] The application name.

queue [str, optional] The queue to deploy to.

18 Chapter 1. Install

https://cloud.google.com/dataproc/docs
http://docs.dask.org/en/latest/configuration.html
http://docs.dask.org/en/latest/configuration.html

Dask Yarn

tags [sequence, optional] A set of strings to use as tags for this application.

user [str, optional] The user to submit the application on behalf of. Default is the current user
- submitting as a different user requires user permissions, see the YARN documentation for
more information.

host [str, optional] Host address on which the scheduler will listen. Only used if
deploy_mode='local'. Defaults to '0.0.0.0'.

port [int, optional] The port on which the scheduler will listen. Only used if
deploy_mode='local'. Defaults to 0 for a random port.

dashboard_address [str] Address on which to the dashboard server will listen. Only used if
deploy_mode='local'. Defaults to ‘:0’ for a random port.

skein_client [skein.Client, optional] The skein.Client to use. If not provided, one will be
started.

asynchronous [bool, optional] If true, starts the cluster in asynchronous mode, where it can be
used in other async code.

loop [IOLoop, optional] The IOLoop instance to use. Defaults to the current loop in asyn-
chronous mode, otherwise a background loop is started.

Examples

>>> cluster = YarnCluster(environment='my-env.tar.gz', ...)
>>> cluster.scale(10)

adapt(minimum=0, maximum=inf, interval=’1s’, wait_count=3, target_duration=’5s’, **kwargs)
Turn on adaptivity

This scales Dask clusters automatically based on scheduler activity.

Parameters

minimum [int, optional] Minimum number of workers. Defaults to 0.

maximum [int, optional] Maximum number of workers. Defaults to inf.

interval [timedelta or str, optional] Time between worker add/remove recommendations.

wait_count [int, optional] Number of consecutive times that a worker should be suggested
for removal before we remove it.

target_duration [timedelta or str, optional] Amount of time we want a computation to take.
This affects how aggressively we scale up.

**kwargs : Additional parameters to pass to distributed.Scheduler.
workers_to_close.

Examples

>>> cluster.adapt(minimum=0, maximum=10)

close(**kwargs)
Close this cluster. An alias for shutdown.

See also:

1.7. API Docs 19

Dask Yarn

shutdown

dashboard_link
Link to the dask dashboard. None if dashboard isn’t running

classmethod from_application_id(app_id, skein_client=None, asynchronous=False,
loop=None)

Connect to an existing YarnCluster with a given application id.

Parameters

app_id [str] The existing cluster’s application id.

skein_client [skein.Client] The skein.Client to use. If not provided, one will be
started.

asynchronous [bool, optional] If true, starts the cluster in asynchronous mode, where it can
be used in other async code.

loop [IOLoop, optional] The IOLoop instance to use. Defaults to the current loop in asyn-
chronous mode, otherwise a background loop is started.

Returns

YarnCluster

classmethod from_current(asynchronous=False, loop=None)
Connect to an existing YarnCluster from inside the cluster.

Parameters

asynchronous [bool, optional] If true, starts the cluster in asynchronous mode, where it can
be used in other async code.

loop [IOLoop, optional] The IOLoop instance to use. Defaults to the current loop in asyn-
chronous mode, otherwise a background loop is started.

Returns

YarnCluster

classmethod from_specification(spec, skein_client=None, asynchronous=False,
loop=None)

Start a dask cluster from a skein specification.

Parameters

spec [skein.ApplicationSpec, dict, or filename] The application specification to use. Must
define at least one service: 'dask.worker'. If no 'dask.scheduler' service is
defined, a scheduler will be started locally.

skein_client [skein.Client, optional] The skein.Client to use. If not provided, one will
be started.

asynchronous [bool, optional] If true, starts the cluster in asynchronous mode, where it can
be used in other async code.

loop [IOLoop, optional] The IOLoop instance to use. Defaults to the current loop in asyn-
chronous mode, otherwise a background loop is started.

logs(scheduler=True, workers=True)
Return logs for the scheduler and/or workers

Parameters

scheduler [boolean, optional] Whether or not to collect logs for the scheduler

20 Chapter 1. Install

Dask Yarn

workers [boolean or iterable, optional] A list of worker addresses to select. Defaults to all
workers if True or no workers if False

Returns

logs [dict] A dictionary of name -> logs.

scale(n)
Scale cluster to n workers.

Parameters

n [int] Target number of workers

Examples

>>> cluster.scale(10) # scale cluster to ten workers

shutdown(status=’SUCCEEDED’, diagnostics=None)
Shutdown the application.

Parameters

status [{‘SUCCEEDED’, ‘FAILED’, ‘KILLED’}, optional] The yarn application exit sta-
tus.

diagnostics [str, optional] The application exit message, usually used for diagnosing fail-
ures. Can be seen in the YARN Web UI for completed applications under “diagnostics”.
If not provided, a default will be used.

workers()
A list of all currently running worker containers.

1.8 CLI Docs

Warning: The CLI is experimental and may change between versions

1.8.1 dask-yarn

Deploy Dask on Apache YARN

usage: dask-yarn [--help] [--version] command ...

--help, -h
Show this help message then exit

--version
Show version then exit

dask-yarn kill

Kill a Dask application

1.8. CLI Docs 21

Dask Yarn

usage: dask-yarn kill [--help] APP_ID

app_id
The application id

--help, -h
Show this help message then exit

dask-yarn services

Manage Dask services

usage: dask-yarn services [--help] command ...

--help, -h
Show this help message then exit

dask-yarn services client

Start a Dask client process

usage: dask-yarn services client [--help] script [args...]

script
Path to a Python script to run.

args
Any additional arguments to forward to script

--help, -h
Show this help message then exit

dask-yarn services scheduler

Start a Dask scheduler process

usage: dask-yarn services scheduler [--help]

--help, -h
Show this help message then exit

dask-yarn services worker

Start a Dask worker process

usage: dask-yarn services worker [--nthreads NTHREADS]
[--memory_limit MEMORY_LIMIT] [--help]

--nthreads <nthreads>
Number of threads. Defaults to number of vcores in container

--memory_limit <memory_limit>
Maximum memory available to the worker. This can be an integer (in bytes), a string (like ‘5 GiB’ or ‘500
MiB’), or 0 (no memory management). Defaults to the container memory limit.

22 Chapter 1. Install

Dask Yarn

--help, -h
Show this help message then exit

dask-yarn status

Check the status of a submitted Dask application

usage: dask-yarn status [--help] APP_ID

app_id
The application id

--help, -h
Show this help message then exit

dask-yarn submit

Submit a Dask application to a YARN cluster

usage: dask-yarn submit [--name NAME] [--queue QUEUE] [--user USER]
[--tags TAGS] [--environment ENVIRONMENT]
[--deploy-mode DEPLOY_MODE]
[--worker-count WORKER_COUNT]
[--worker-vcores WORKER_VCORES]
[--worker-memory WORKER_MEMORY]
[--worker-restarts WORKER_RESTARTS]
[--worker-env WORKER_ENV]
[--client-vcores CLIENT_VCORES]
[--client-memory CLIENT_MEMORY]
[--client-env CLIENT_ENV]
[--scheduler-vcores SCHEDULER_VCORES]
[--scheduler-memory SCHEDULER_MEMORY]
[--temporary-security-credentials] [--help]
script [args...]

script
Path to a python script to run on the client

args
Any additional arguments to forward to script

--name <name>
The application name

--queue <queue>
The queue to deploy to

--user <user>
The user to submit the application on behalf of. Default is the current user - submitting as a different user
requires proxy-user permissions.

--tags <tags>
A comma-separated list of strings to use as tags for this application.

--environment <environment>
Path to the Python environment to use. See the docs for more information

1.8. CLI Docs 23

Dask Yarn

--deploy-mode <deploy_mode>
Either ‘remote’ (default) or ‘local’. If ‘remote’, the scheduler and client will be deployed in a YARN container.
If ‘local’, they will be run locally.

--worker-count <worker_count>
The number of workers to initially start.

--worker-vcores <worker_vcores>
The number of virtual cores to allocate per worker.

--worker-memory <worker_memory>
The amount of memory to allocate per worker. Accepts a unit suffix (e.g. ‘2 GiB’ or ‘4096 MiB’). Will be
rounded up to the nearest MiB.

--worker-restarts <worker_restarts>
The maximum number of worker restarts to allow before failing the application. Default is unlimited.

--worker-env <worker_env>
Environment variables to set on the workers. Pass a key-value pair like --worker-env key=val. May be
used more than once.

--client-vcores <client_vcores>
The number of virtual cores to allocate for the client.

--client-memory <client_memory>
The amount of memory to allocate for the client. Accepts a unit suffix (e.g. ‘2 GiB’ or ‘4096 MiB’). Will be
rounded up to the nearest MiB.

--client-env <client_env>
Environment variables to set on the client. Pass a key-value pair like --client-env key=val. May be
used more than once.

--scheduler-vcores <scheduler_vcores>
The number of virtual cores to allocate for the scheduler.

--scheduler-memory <scheduler_memory>
The amount of memory to allocate for the scheduler. Accepts a unit suffix (e.g. ‘2 GiB’ or ‘4096 MiB’). Will
be rounded up to the nearest MiB.

--temporary-security-credentials
Instead of using a consistent set of TLS credentials for all clusters, create a fresh set just for this application.

--help, -h
Show this help message then exit

24 Chapter 1. Install

Index

Symbols
-client-env <client_env>

dask-yarn-submit command line
option, 24

-client-memory <client_memory>
dask-yarn-submit command line

option, 24
-client-vcores <client_vcores>

dask-yarn-submit command line
option, 24

-deploy-mode <deploy_mode>
dask-yarn-submit command line

option, 23
-environment <environment>

dask-yarn-submit command line
option, 23

-help, -h
dask-yarn command line option, 21
dask-yarn-kill command line option,

22
dask-yarn-services command line

option, 22
dask-yarn-services-client command

line option, 22
dask-yarn-services-scheduler

command line option, 22
dask-yarn-services-worker command

line option, 22
dask-yarn-status command line

option, 23
dask-yarn-submit command line

option, 24
-memory_limit <memory_limit>

dask-yarn-services-worker command
line option, 22

-name <name>
dask-yarn-submit command line

option, 23
-nthreads <nthreads>

dask-yarn-services-worker command
line option, 22

-queue <queue>
dask-yarn-submit command line

option, 23
-scheduler-memory <scheduler_memory>

dask-yarn-submit command line
option, 24

-scheduler-vcores <scheduler_vcores>
dask-yarn-submit command line

option, 24
-tags <tags>

dask-yarn-submit command line
option, 23

-temporary-security-credentials
dask-yarn-submit command line

option, 24
-user <user>

dask-yarn-submit command line
option, 23

-version
dask-yarn command line option, 21

-worker-count <worker_count>
dask-yarn-submit command line

option, 24
-worker-env <worker_env>

dask-yarn-submit command line
option, 24

-worker-memory <worker_memory>
dask-yarn-submit command line

option, 24
-worker-restarts <worker_restarts>

dask-yarn-submit command line
option, 24

-worker-vcores <worker_vcores>
dask-yarn-submit command line

option, 24

A
adapt() (dask_yarn.YarnCluster method), 19

25

Dask Yarn

app_id
dask-yarn-kill command line option,

22
dask-yarn-status command line

option, 23
args

dask-yarn-services-client command
line option, 22

dask-yarn-submit command line
option, 23

C
close() (dask_yarn.YarnCluster method), 19

D
dashboard_link (dask_yarn.YarnCluster attribute),

20
dask-yarn command line option

-help, -h, 21
-version, 21

dask-yarn-kill command line option
-help, -h, 22
app_id, 22

dask-yarn-services command line option
-help, -h, 22

dask-yarn-services-client command line
option

-help, -h, 22
args, 22
script, 22

dask-yarn-services-scheduler command
line option

-help, -h, 22
dask-yarn-services-worker command line

option
-help, -h, 22
-memory_limit <memory_limit>, 22
-nthreads <nthreads>, 22

dask-yarn-status command line option
-help, -h, 23
app_id, 23

dask-yarn-submit command line option
-client-env <client_env>, 24
-client-memory <client_memory>, 24
-client-vcores <client_vcores>, 24
-deploy-mode <deploy_mode>, 23
-environment <environment>, 23
-help, -h, 24
-name <name>, 23
-queue <queue>, 23
-scheduler-memory

<scheduler_memory>, 24
-scheduler-vcores

<scheduler_vcores>, 24

-tags <tags>, 23
-temporary-security-credentials, 24
-user <user>, 23
-worker-count <worker_count>, 24
-worker-env <worker_env>, 24
-worker-memory <worker_memory>, 24
-worker-restarts <worker_restarts>,

24
-worker-vcores <worker_vcores>, 24
args, 23
script, 23

F
from_application_id() (dask_yarn.YarnCluster

class method), 20
from_current() (dask_yarn.YarnCluster class

method), 20
from_specification() (dask_yarn.YarnCluster

class method), 20

L
logs() (dask_yarn.YarnCluster method), 20

S
scale() (dask_yarn.YarnCluster method), 21
script

dask-yarn-services-client command
line option, 22

dask-yarn-submit command line
option, 23

shutdown() (dask_yarn.YarnCluster method), 21

W
workers() (dask_yarn.YarnCluster method), 21

Y
YarnCluster (class in dask_yarn), 18

26 Index

	Install
	Quickstart
	Managing Python Environments
	Configuration
	Submitting Applications
	Deploying on Amazon EMR
	Deploying on Google Cloud Dataproc
	API Docs
	CLI Docs

	Index

